United States Patent

US009063710B2

(12) 10) Patent No.: US 9,063,710 B2
Bornhoevd et al. 45) Date of Patent: Jun. 23, 2015
(54) PARALLEL PROGRAMMING OF IN 8,954,418 B2* 2/2015 Faerberetal. 707/718
MEMORY DATABASE UTILIZING 2004/0010502 Al* 1/2004 Bomfimet al. 707/100
2004/0010753 Al* 1/2004 Salteretal. 715/513
EXTENSIBLE SKELETONS 2005/0097528 Al* 5/2005 Chakrabartietal. 717/140
. . 2006/0288335 Al 12/2006 Goglin et al.
(71) Applicants: Christof Bornhoevd, Belmont, CA 2008/0098375 AL* 4/2008 ISard ..o, 717/149
(US); Wolfgang Lehner, Waldorf (DE) 2010/0131444 Al 5/2010 Gottlieb et al.
2010/0241827 Al* 9/2010 Yuetal. ...ccooovvrvrvrvinnnnns 712/30
(72) Inventors: Christof Bornhoevd, Belmont, CA %8}};8(1)22}‘2 ﬁi: ;ggﬁ Ehader ett all. - ;gg%g
. avrov etal., ...
(US); Wolfgang Lehner, Waldorf (DE) 2012/0151462 Al 6/2012 Joisha et al.
(73) Assignee: SAP SE, Walldorf (DE) (Continued)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Franz Farber et al.: “The SAP HAN A Database—An Architecture
U.S.C. 154(b) by 62 days. Overview”, IEEE Data Engineering Bulletin, vol. 35, Mar. 1, 2012.*
(Continued)
(21) Appl. No.: 13/924,105
(22) Filed: Jun. 21, 2013 Primary Examiner — Don Wong
Assistant Examiner — Daxin Wu
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Fountainhead Law Group
PC
US 2014/0380266 Al Dec. 25,2014
(51) Int.CL 57 ABSTRACT
GO6F 9/44 (2006.01) An execution framework allows developers to write sequen-
(52) US.CL tial computational logic, constrained for the runtime system
CPC . GOGF 8/20 (2013.01); GOG6F 8/314 (2013.01) to efficiently parallelize execution of custom business logic.
i i i e framework can be leveraged to overcome limitations in
(58) Field of Classification Search The fi - 11< | bel 5 fl% dd . li L i h i
None executing low level procedural code, by empowering the sys-
See application file for complete search history. tem runtime environment to parallelize this code. Embodi-
ments employ algorithmic skeletons in the realm of optimiz-
56 References Cited mng/executin ata tlow graphs o tabase management
(56) ing/ ing data flow graphs of datab g

U.S. PATENT DOCUMENTS

5,781,777 A 7/1998 Sato et al.
6,681,230 Bl 1/2004 Blott et al.
7,574,424 B2 8/2009 Chowdhuri
7,797,691 B2 9/2010 Cockx et al.
7,885,969 B2 2/2011 Natarajan et al.
8,209,664 B2 6/2012 Yuet al.

8,316,355 B2 11/2012 Fengetal.
8,321,476 B2 11/2012 Kirk et al.
8,365,136 B2 1/2013 Kowalkiewicz et al.
8,381,224 B2* 2/2013 Huetteretal. 718/104
8,448,155 B2 5/2013 Bordelon et al.

systems. By providing an extensible set of algorithmic skel-
etons the developer of custom logic can select the skeleton
appropriate for new custom logic, and then fill in the corre-
sponding computation logic according to the structural tem-
plate of the skeleton. The skeleton provides a set of con-
straints known to the execution environment, that can be
leveraged by the optimizer and the execution environment to
generate parallel optimized execution plans containing cus-
tom logic, without the developer having to explicitly describe
parallelization of the logic.

15 Claims, 20 Drawing Sheets

L]

L Dage Maasgament Moo 106

US 9,063,710 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0284228 Al* 11/2012 Ghoshetal. 707/615
2014/0372428 Al* 12/2014 Mathisetal. ... 707/736
OTHER PUBLICATIONS

Duncan K. G. Campbell. “Towards the classification of algorithmic
skeletons.” Technical Report YCS 276, Department of Computer
Science, University of York, UK, 1996.

Murray Cole. “Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming.” Parallel Computing,
30(3):389-406, 2004.

Jeffrey Dean and Sanjay Ghemawat. “Mapreduce: Simplified data
processing on large clusters.” in 6th Symposium on Operating Sys-
tem Design and Implementation (OSDI 2004), San Francisco, Cali-
fornia, US, pp. 137-150, 2004.

Laney Douglas. 3d data management: “Controlling data volume,
velocity and variety.” Technical Report 949, META Group Inc.,2001.
Horacio Gonzalez-Velez and Mario Leyton. “A survey of algorithmic
skeleton frameworks: high-level structured parallel programming
enablers.” Softw., Pract. Exper., 40(12):1135-1160, 2010.

Dhrubajyoti Goswami, Ajit Singh, and Bruno R. Preiss. “Architec-
tural skeletons: The re-usable building-blocks for parallel applica-
tions.” in PDPTA, pp. 1250-1256, 1999.

Herbert Kuchen Philipp Ciechanowicz, Michael Poldner. “The
muenster skeleton library muesli—a comprehensive overview.”
Working Paper ERCIS, (7):1-82, 2009.

Usman Dastgeer: “Skeleton Programming for Heterogeneous GPU-
based Systems”, Jan. 1,2011, XP055148154, Linkopings University,
ISBN: 978-9-17-393066-6, Retrieved from the Internet: URL:http://
libris.kb.se/resource/bib/12308713 [retrieved on Oct. 30, 2014], 108
pgs.

Usman Dastgeer et al.: “Auto-Tuning SkePU: A Multi-Backend Skel-
eton Programming Framework for Multi-GPU Systems”, Proceeding
of the 4th International Workshop on Multicore Software Engineer-
ing, IWMSE °11, Jan. 1, 2011, XP055148152, New York, New York,
USA DOI: 10.1145/1984693.1984697, ISBN: 978-1-45-030577-8,
pp. 25-32.

Franz Farber et al.: “The SAP HANA Database—An Architecture
Overview”, IEEE Data Engineering Bulletin, vol. 35, Mar. 1, 2012,
pp. 1-6, XP055148167, pp. 1-6.

Extended European Search Report, from a corresponding foreign
application, EP14002086.8, dated Nov. 13, 2014.

* cited by examiner

US 9,063,710 B2

Sheet 1 of 20

Jun. 23, 2015

LS el TeT |

usgEsdy

~_8ll

801

US 9,063,710 B2

Sheet 2 of 20

Jun. 23, 2015

U.S. Patent

Jadoprag

801

Vi 'Old

ue|d uonnoax3
|alesed

auibuz uonezig|BIRd

A - 91607 endwio)

\ .

il

45"

oledws |
uolBIeNg

\ \\

\

/ oLl

ocl

US 9,063,710 B2

Sheet 3 of 20

Jun. 23, 2015

U.S. Patent

pauan-

" E I
i
uoieEsIE8e 18

zv.

SHUBLIRS
w% LR {DA LAW
waypaado O 185 paxy

SAEIBO0 D8

v

gl "Old

geilel bR

DAL 185

»
K
=
v
°
2
“
-
k4
a
¥
E
>
©
-

Cwaaa

e A N R AR S

WO

U.S. Patent Jun. 23,2015 Sheet 4 of 20 US 9,063,710 B2

Compute Logic Provided to Parallelization Engine
- 152

Skeleton Template Provided to Parallelization Engine ™\ 154

Compute Logic Transformed into Skeleton Instantiation ™\ 156

Skeleton Instantiation Embedded into Parallel Execution }~_ 454
Plan

FIG. 1C

U.S. Patent

Jun. 23, 2015

Sheet 5 of 20

US 9,063,710 B2

BrograneEny

Dustribation

Ianoumee Yhrary :
Al Fava Javn Y, Y Ay s,
Rt

sont, vedhen, yopBoats

{usion
contead Iaan

g, pannod

aboiong

Fawn

sag. prgse, Faen, o
while, map, dfc, B

ok

Fdug

kel
fentonsion}

g, $&e, pips,

eriiatdl, forus, sy

ket

pape, farva, deal,
Featiar By, hallowSwap

51548

g, ved, soa, filler,
doz, B, &D, S, &F

Ciasbss

farrn, pipe, wavefiont

ESA

fasyn, prpe, Besythent

DpenvE

i athsan Favew Ry PES, INAR,
e, redurs
Hiaiths e HeASsream exact, henwisho,
AFL fybnd
wivesis Cite P syewy, sstex, fam

pipe, paradied comyp

{Cusions

hsked Favn Rt Formy, prpe, S, cushen
L MPL aap, reduns, 580, CORP,

ppe, Barey, soax, foop

DUAFF

MPI

sag, prpe, Tamn
sont, pardo

i

TN

¥

Cusioon

Theeads

genarmry, wodanay, fald

Y

"

b

Caston
controd Isag,

Towds

sy, seat, faax
fold, SPMTS, dteray

Khasdinee

Java

Thesnds

seqq. g, fann, for,
while, map, dis, foyl

BHELD

MP

BeTe

fases

MPL

UL ACustom
soatend fany

MPE

fasyn, pipe,
yediace, ooy

i
{suibsat)

pardata,
nage, Fidd

AML

Seniiex

s, 8F 3 inteamss

FIG. 2

US 9,063,710 B2

Sheet 6 of 20

Jun. 23, 2015

U.S. Patent

{uerd
wonpnoaxe aysads
-Rianb} pspow oo

apried feysiiyd

forepduas
FRHTIONS) fpow
BT DU

fapog wolsnd
A PRPUSIXD)
rojerodo ops
ageied pomboy

{pauyapaid)
wianed
igrerado
HETY jojfRity

€ "Old

sHIpOW
Bupndiwos japesed
16 UBISHos B BP
wisibosd jaunieg

SIULISH HNpOW
Sunndiics eIt

{abor

UonRIaxa aaads
yum) anpow
Gupidinos fpleiey

ﬂ puaixa M. piaixa
& h] i &

T e FIETIT T ,
P IT p PN {uorareys) wisped
! B L Vo [uopnoaxe jeyeied

5, - _.ia.. 3 £ 19 - ,I. 3 r

", oz o 4 -, LT, #
sy gy e - T g -

U.S. Patent Jun. 23,2015 Sheet 7 of 20 US 9,063,710 B2

FIG. 3A

FIG. 3B
DIPE o

fn wiork, () A

S A SO R O O A SO AR BN B S SO

XKD, 203, KK AR KR KD, KD NN NIy I KR, R KK KN

& X]
Ciele MY

i 0 a0 - B Wl D el O B! Wl K Dl)

] . e e F
%& ol 1 y

tmvalonment thme | runthme

U.S. Patent Jun. 23,2015 Sheet 8 of 20 US 9,063,710 B2

AYRTOLD

syl
P i b el i
T b ke o cn B
TF 58 1

fox xf o ok xx o e f

runtime

FIG. 3C

FIG. 3D

 PAREA

o

US 9,063,710 B2

Sheet 9 of 20

Jun. 23, 2015

U.S. Patent

. [Jouiguio3s

s,

s

P

b

prn

3€ 'Old

Jsanbuo)
PUE BpiAIQ

US 9,063,710 B2

Sheet 10 of 20

Jun. 23, 2015

U.S. Patent

€ 'Ol

U.S. Patent Jun. 23,2015 Sheet 11 of 20 US 9,063,710 B2

FIG. 3G

FIG. 3H

U.S. Patent Jun. 23,2015 Sheet 12 of 20 US 9,063,710 B2

DIDID, PID, (WORDY

sphi DD, PIDY

UWUNT = COL %ﬁﬁwg %ﬁ -s,;:q;}

GWCNT = SUM{LWID woro!

mergel)

DWORD, GWONT]

FIG. 4

US 9,063,710 B2

Sheet 13 of 20

Jun. 23, 2015

U.S. Patent

e -y z

VG 'Old

o
x“'4

e

.m.
-

o QuBInsoD Jo At o1 &

Www

US 9,063,710 B2

Sheet 14 of 20

Jun. 23, 2015

U.S. Patent

AVIN §

(Faywf ()i yepw Jo ssepo ayy 03 Y uSs Y

gS "Old

po I

g eandwon
g ,%w aangyeal v 140§
- (7 i&q nduiony
w&muﬁas, »mmw Hu »ﬁm :u.u Mﬁmw.mﬂmm imﬂw
Yt tlp B M S1UDUINDOP 8 0] 10

e

T ouLumunoop jo Yyt

U.S. Patent Jun. 23,2015 Sheet 15 of 20 US 9,063,710 B2

TE TABLE C{CID swring, FID Srring, mu Dovbls, sigms Doubled
PRIMARY KEY (CIL, FPID};
ATE TABLE DL(RID Inpeger, PIDR Integer, Text String
PRIMARY ¥EY (RID, P
DREATE TABLE DR{RID Integsr, FID Integer, FIE Btripg, count lnteger)
IMARY HEY (DID, PID, F :

ATE TABLE B3(

I} Integsr, P‘ID Integer, CID stying, FIL Strimg,
count .Ez:t.eggr5 wu Dowpbis, sigms Doublel

FIlyy
PH} Integer, CID string, probability Double)

£

*HIMBRY HEY 'DED
CRESTE TABLE DEB{I
PHIMERY KEY {DNDI;

CREATE PRECEDURE COINTOIN dava DI, OUHT sumlounts DED

LANDUAGE LLANT AS

BEG PARALLEL TE_BPLIT{:dmtz, ("DID™, *PIR%), "Hash"™, 32}

#L cogde o oount FID inm fext =

END

END PARALLEL CE_ACCGREDATION:coumts, {sum{Yooumnt®yd, I[ODIDM "BIDR® *FIB"1);

CREATE PROCEDUBE PROB{IN coupteleinClass BS, SUT probabilities D}
LAWEUAGE LLAMY AR

{ PARALLEL QE_BPLITY $ERILT, YPIDY, CCIDTY | “HashY, 32}

CREATE PROCEDVEE SelsctClass(I¥ probabi
_m:a TUAGE LLAND AB
T PARALLEL (B _SPLIT(:probabilities, ("DID"}, “Hash”, 32

“@-c".s o zelslt mavw classe

HG PARALLEL CE_UNION_ALLI);

TE 3'?&"?3{‘5}1‘2' ducumentilassificationf{I¥ dats Bl. T¥ class¥odsl O, §UT docllass BES
AGE SQLBURIPT AR

o classModell;
iogr;

electilass{probabilitiss, docllassl;

FIG. 5C

U.S. Patent Jun. 23, 2015

3 E

\ 288 {DID,FIDFID

(DD PIDFD, co

unt

)

Sheet 16 of 20

US 9,063,710 B2

CICIDFID, muy, sigma)

b oee WD oo e OO WD oo W on o

0

el

&

3

2

L3

{""*‘s

3

‘:{“ 3 3
L1 o
o

o

s

S

=

=

?j

Qﬁl

o

"3-3.3

g%“ %E'f%?{f}?fé v,

Da{DID PID CID, probability)

b coe WO eone O GO e ooee wen o ¥

e, e WA OSSN S W N W o W

FIG. 6

US 9,063,710 B2

Sheet 17 of 20

Jun. 23, 2015

U.S. Patent

V. "©ld

SLT = {6+ +8+9+G) & ¥ = 1502 PUNOQ 15MO7
6 PRYq @
L R P
8 ERq 3
9 *RE q
G qBp 2
sapou 198y
1503 503 ISB3] 7 BPOU BdINOS

US 9,063,710 B2

Sheet 18 of 20

Jun. 23, 2015

U.S. Patent

4. '9Old

GOT = {01+ +649486] 4 ¥ = 1500 PUNDC JSMD
01 R4 8
L rge P
& B p 2
9 age g
6 B8RP ®
SO Jaiiey
1502 SO0 I5e3) 7 SPOU BNOS

U.S. Patent

Jun. 23, 2015 Sheet 19 of 20

US 9,063,710 B2

Computer System

Executable

804 —\|

Y

Software

|

ST
]

Database

(o]
(]
BN

|

803

Skeleton Parallelization
Template [* ™ Engine

— 805

N

FIG. 8

US 9,063,710 B2

Sheet 20 of 20

Jun. 23, 2015

U.S. Patent

6 "Old o |
| |
, ™ 106
016~ eaineq . f\/
! abeiolg !
! I —a 90inaQ Induj
{ |
mom\/_k i |
_ _ -
| S06 “ 116
_ Y _
_ _ > Aeidsig
| }
_ oLl Kiowo ~
W i
vos N/ sHomiaN
" m 26
: 206
1eneS |/ GEB e e i
1NOS |/ 1E6
MIOMISN
|20 (VAR
06 Joulau|
BNBS | N GL6
lanieg /\ €6 laAleg /\, Le6
Janieg /\, 766 ﬂ

US 9,063,710 B2

1
PARALLEL PROGRAMMING OF IN
MEMORY DATABASE UTILIZING
EXTENSIBLE SKELETONS

BACKGROUND

Embodiments of the present invention relate to parallel
programming, and in particular, to parallel programming of
an in memory database with extensible skeletons.

Unless otherwise indicated herein, the approaches
described in this section are not prior art to the claims in this
application and are not admitted to be prior art by inclusion in
this section.

Parallelism is a factor in implementing the operational
requirements for processing large data sets. However, paral-
lelism remains difficult to cope with from an application
perspective, as it is hard to control and to debug.

The traditional landscape of parallel relational database
systems offers an integrated and transparent exploitation of
parallelism to execute SQL queries efficiently on different
parallel system architectures. Systems provide support for
parallelism on chip/board level via multi-threaded execution
models, as well as physical operator implementations with
the goal to bridge the gap between different nodes within a
cluster scenario.

In memory databases may also follow that main path, but
provide additional constructs to compile complex custom
code into generic operators of an execution model. Since such
systems do not have any knowledge about a potential degree
of parallelism, either the system is forced to execute custom
code snippets fully sequentially or the model developer has to
describe the possible parallelization of the custom code.
Therefore, the application programmer has to explicitly think
and program in parallel data structures and has to explicitly
define synchronization points. This behavior might result in
situations where the degree of parallelism defined by the
programmer does not match an optimal degree of parallelism
during runtime. Additionally, since programming in a parallel
way requires training and expertise, some of the models
might simply not fully leverage possible parallelism and sub-
stantially miss performance opportunities.

Accordingly, the present disclosure addresses these and
other issues with techniques for parallel programming of an
in memory database utilizing extensible sets of algorithmic
skeletons.

SUMMARY

An execution framework allows developers to write
sequential computational logic, constrained for the runtime
system to efficiently parallelize execution of custom business
logic. The framework can be leveraged to overcome limita-
tions in executing low level procedural code, by empowering
the system runtime environment to parallelize this code.
Embodiments employ algorithmic skeletons in the realm of
optimizing/executing data flow graphs of database manage-
ment systems. By providing an extensible set of algorithmic
skeletons the developer of custom logic can select the skel-
eton appropriate for new custom logic, and then fill in the
corresponding computation logic according to the structural
template of the skeleton. The skeleton provides a set of con-
straints known to the execution environment, that can be
leveraged by the optimizer and the execution environment to
generate parallel optimized execution plans containing cus-
tom logic, without the developer having to explicitly describe
parallelization of the logic.

10

20

25

40

45

55

2

An embodiment of a computer-implemented method com-
prises, in a design time environment providing compute logic
for data management to a parallelization engine as a first
input, providing a skeleton template to the parallelization
engine as a second input, and causing the parallelization
engine to transform the compute logic into an instantiation of
the skeleton describing the compute logic. In a run time
environment, the parallelization engine is caused to embed
the instantiation into a parallel execution plan for execution in
parallel.

An embodiment of a non-transitory computer readable
storage medium embodies a computer program for perform-
ing a method. The method comprises, in a design time envi-
ronment providing compute logic for data management to a
parallelization engine as a first input, providing a skeleton
template to the parallelization engine as a second input, and
causing the parallelization engine to transform the compute
logic into an instantiation of the skeleton describing the com-
pute logic. In a run time environment, the parallelization
engine is caused to embed the instantiation into a parallel
execution plan for execution in parallel.

An embodiment of a computer system comprises one or
more processors and a software program, executable on said
computer system. In a design time environment, the software
program is configured to provide compute logic for data
management to a parallelization engine as a first input, pro-
vide a skeleton template to the parallelization engine as a
second input, and cause the parallelization engine to trans-
form the compute logic into an instantiation of the skeleton
describing the compute logic. In a run time environment, the
software program is configured to cause the parallelization
engine to embed the instantiation into a parallel execution
plan for execution in parallel.

In some embodiments the parallel execution plan further
comprises an additional data operation.

According to certain embodiments, the additional data
operation comprises a relational operator.

In various embodiments the parallel execution plan further
comprises an additional skeleton instance.

According to particular embodiments the parallelization
engine comprises a calculation engine of an in memory data-
base.

In some embodiments the compute logic is transformed
into the instantiation according to a calculation model com-
prising a data flow graph.

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages of particular embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a simplified view of an embodiment of a
system.

FIG. 1A shows a simplified view of a parallelization engine
that is configured to implement the parallel programming
according to embodiments.

FIG. 1B shows a simplified view illustrating a spectrum of
possible approaches to addressing the issue of parallel pro-
gramming.

FIG. 1C is a simplified flow diagram showing an embodi-
ment of a method.

FIG. 2 is a comparative table of algorithmic skeleton
frameworks.

FIG. 3 shows adaptation of parallel algorithm skeletons to
data flow graphs.

FIG. 3A shows the SEQUENTIAL architectural skeleton.

FIG. 3B shows the PIPE parallel architectural skeleton.

US 9,063,710 B2

3

FIG. 3C shows the SYSTOLIC parallel architectural skel-
eton.

FIG. 3D shows the FARM parallel architectural skeleton.

FIG. 3E shows the Divide and Conquer parallel algorith-
mic skeleton.

FIG. 3F shows the Branch and Bound parallel algorithmic
skeleton.

FIG. 3G shows the Mapping of the Map and Reduce to the
Farm skeleton.

FIG. 3H shows the Map and Reduce parallel algorithmic
skeleton.

FIG. 4 shows a skeleton to implement WordCount via the
MapReduce skeleton.

FIG. 5A shows pseudo code to train text classification.

FIG. 5B shows pseudo code to assign documents to lan-
guage classes.

FIG. 5C shows script snippets to implement document
language classification according to an embodiment.

FIG. 6 shows the execution plan based on skeletons.

FIG. 7A outlines the computation of a lower bound for a
given traveling salesman scenario.

FIG. 7B shows a scenario of the example initially depicted
in FIG. 7A.

FIG. 8 illustrates hardware of a special purpose computing
machine configured to perform parallel execution according
to an embodiment.

FIG. 9 illustrates an example of a computer system.

DETAILED DESCRIPTION

Described herein are techniques for parallel programming
of'an in memory database utilizing extensible skeletons. The
apparatuses, methods, and techniques described below may
be implemented as a computer program (software) executing
on one or more computers. The computer program may fur-
ther be stored on a computer readable medium. The computer
readable medium may include instructions for performing the
processes described below.

In the following description, for purposes of explanation,
numerous examples and specific details are set forth in order
to provide a thorough understanding of the present invention.
It will be evident, however, to one skilled in the art that the
present invention as defined by the claims may include some
or all of the features in these examples alone or in combina-
tion with other features described below, and may further
include modifications and equivalents of the features and
concepts described herein.

The trend on the hardware side to increase the number of
processing units (either cores or nodes) is conceptually easy
to exploit, if the system is working with a fixed set of opera-
tors. Parallelization can be done during the development time
of the system and the runtime can decide about the degree of
parallelism. The most famous examples are parallel imple-
mentations of different relational operators in RDBMS. For
example, a database system may have a highly tuned and well
tested parallel implementation of a join operator.

As soon as the semantics of “operators” is not yet known
during development time, it is hard for the system to come up
with an efficient parallel execution plan—this is left to the
developer. As soon as application logic is moved into the
system, e.g. as generic operators, the application developer
has to provide a parallel implementation, which may be dif-
ficult.

Accordingly, embodiments relate to an “Open paRallel
Computing Architecture” (ORCA) that provides a set of 2nd
order functions, hereafter referred to as parallel algorithmic
skeletons, which may address this issue. As soon as the appli-

20

25

30

35

40

45

4

cation programmer adheres to the constraints coming with the
skeletons, the system is able to automatically provide a par-
allel execution. Also, the application developer may remain in
a serial execution model. In the following, different skeletons
are presented, and it is shown that the MapReduce program-
ming paradigm can be subsumed by a more general approach
providing the application programmer a higher degree of
freedom and picking the best combination of skeletons to
express the parallel aspects of the application problem.
Embodiments support application programmers to produce
application code which is able to run in parallel and exploit
current hardware architectures more effectively.

FIG. 11is a diagram showing a simplified high level view of
a system 100 according to an embodiment. A Design Time
Environment 102 and a Run Time Environment 104 are both
part of a Data Management Platform 106 in which extensible
skeletons are to be employed for parallel programming.

At design time a developer 108 takes problem-specific
compute logic 110, and selects the appropriate skeleton. As
used herein, the basic form of'the skeleton is referred to herein
as a skeleton template 112.

The developer then describes the compute logic in the form
of'the selected skeleton template. The skeleton is provided by
the design time environment, and is known to the run time
environment.

The compute logic as described in the form of the selected
skeleton, is herein referenced as an instantiation 113 of the
skeleton template. By transforming the compute logic into a
particular instantiation of the specific skeleton, the compute
logic follows certain structural and dependency constraints
defined by the selected skeleton template.

The instantiation of the skeleton describing the compute
logic, is then embedded in a Parallel Execution Plan 114.
Since the run time environment is aware of the constraints
imposed by the skeleton template that is being used, the run
time environment can automatically devise the best way to
parallelize the different parts ofthe provided compute logic as
part of the parallel execution plan.

Such a parallel execution plan can also include other data
operations or skeleton instances. Examples of such other data
operations include but are not limited to relational operators,
and those other data operators or skeleton instances are shown
in open circles 116.

The optimized parallel execution plan is executed as the
response of a corresponding function/service call from an
application program 118 being used by one or multiple end
users 120. The results of the executed parallel execution plan
are returned to the application program, and then returned
(perhaps in modified form) to the end user.

FIG. 1A shows a simplified view of a parallelization engine
that is configured to implement the parallel programming
according to embodiments. In particular, parallelization
engine 130 is configured to receive a first input in the form of
compute logic 132 comprising a data flow. The parallelization
engine is also configured to receive a second input in the form
of a skeleton template 134.

In response to these inputs, the parallelization engine is
configured to produce an output 136. Specifically, the paral-
lelization engine is configured to transform the compute logic
into an instantiated skeleton that is configured to execute that
compute logic in a parallel manner according to the skeleton
template. The developer selects one of a given set of skeletons
(templates) and maps given custom logic to the structure and
constraints of the skeleton in order to achieve a skeleton
instance.

That instantiated skeleton in then embedded in the run time
and executed, as is shown and discussed below in connection

US 9,063,710 B2

5

with FIG. 3. The parallel execution of such a skeleton instance
(likely as part of a more complex execution plan) is deter-
mined and performed by the run-time system.

FIG. 1B shows a simplified view showing a location of the
ORCA approach within a spectrum of possible approaches to
addressing the issue of parallel programming. In particular,
FIG. 1B shows ORCA to occupy a middle ground between
the use of generic operators with custom code, and the use of
a fixed set of operators with well-defined semantics.

FIG. 1C shows a simplified process flow of a method 150
according to an embodiment. In a first step 152, in a design
time environment compute logic for data management is pro-
vided to a parallelization engine as a first input. In a second
step 154, a skeleton template is provided to the parallelization
engine as a second input. In a third step 156, the paralleliza-
tion engine is caused to transform the compute logic into an
instantiation of the skeleton describing the compute logic. In
a fourth step 158, in a run time environment the paralleliza-
tion engine is caused to embed the instantiation into a parallel
execution plan for execution in parallel.

1.1 Parallelism from a Database Perspective

The “closed” set of relational operators with their very
accurately defined semantics allow exploiting parallelism as
much as possible while providing full transparency to the
user. On the one hand, the user therefore is not aware of any
parallelism used to execute a specific database query. On the
other hand, the user may not have a way to convey any
application-specific knowledge which might help the system
to even further leverage a parallel run-time environment. The
classical approach used in relational database systems—due
to the nature of data processing—is data driven and usually
reflected in terms of data-flow graphs with nodes representing
certain relational operators and edges standing in for the data
flow between the different operators. Based on this notion of
a data flow graph, relational query engines typically support
two different types of parallelism: data parallelism and pipe-
line parallelism.

1.1.1 Data Parallelism

Data parallelism allows to split data into multiple chunks
(either horizontally or vertically) and to execute relational
operators locally on those fragments. While unary operators
like selection can be directly processed on the corresponding
fragments, binary operators like joins require to copy data
partitions between different system components if the parti-
tioning criteria are not compatible. Specifically, the following
distribution patterns can be distinguished.

In the case of co-located data, the partitions are already
compatible, i.e. there is no need to re-distribute data. Co-
located data partitions are therefore a desirable case. In mul-
tidimensional scenarios (like star or snow flake-schemas), the
large fact table can be partitioned to be compatible with a
partition criteria of one dimension table.

In the case of a one-sided distribution, the one-sided dis-
tribution picks one of both tables and re-distributes the data to
be compatible with the partitioning scheme of the other table.
It might be worthwhile to note that often the smaller of both
tables will be repartitioned. The ultimate goal of the optimizer
however is to produce a partitioning scheme which requires as
few redistributions within the complete query as possible. For
the sake of reducing the communication costs in total, the
optimizer might therefore decide to re-distribute the larger
table.

In the case of two-sided distribution, the two-sided distri-
bution scheme reparations both incoming tables of a parallel
operator to a new partitioning scheme. That new partitioning
scheme usually allowing co-located operators within the
course of the query processing.

20

25

30

40

45

6

In the case of broadcast, if one of the operand tables of a
parallel operator is sufficiently small, the optimizer may
decide to replicate the smaller table to all partitions of the
second operand.

Data parallelism has two major advantages for query pro-
cessing. First, data partitions can be processed in parallel to
reduce the overall processing time. Secondly the optimizer
may prune partitions which do not satisfy the selection predi-
cate of a given query. Since both strategies are to some extent
working in the opposite direction, i.e. try to exploit as much
parallelism as possible versus reduce the number of partitions
as much as possible, traditional physical schema design pat-
terns employ a two-level schema of data parallelism: a first
layer based on an application predicate (e.g. month or region)
to easily prune the data set and a second layer based on hash
distribution to support parallel processing.

1.1.2 Pipeline Parallelism

Orthogonal to data parallelism, pipeline parallelism tries to
execute a sequence of operators at the same time working on
different sets of data. Pipeline parallelism is commonly used
in classical database systems and an optimizer has to decide
whether to prefer pipelined plans over plans with blocking
operators. On a SQL level, the application programmer may
have an opportunity to tell the system about the preference of
a pipelined plan by adding the “FETCH FIRST ROWS .. .”
clause to the SELECT-statement. The overall challenge in
defining a pipeline consists in clustering operators such that
the average processing time ofall operators is very similar. As
illustrated in the Halloween-effect, pipeline parallelism may
also exhibit side-effects. Within database systems, one may
distinguish three classes of pipeline parallelism. Tuple-based
pipelining (tuple-as-a-time) implies to have pipelines with
individual tuples as the unit of work and fits nicely to the
open-next-close paradigm. Introduced with the X100-sys-
tem, coarse-grained pipelines comprises vectors of individual
values as units of work and significantly reduces the overhead
of switching contexts in different operators. The third class
table-as-a-time basically implies tables as the unit of work.
Operators are working completely the input stream and gen-
erate the full result in an output stream before the control will
be handed over to the subsequent operator. The HANA™ in
memory database available from SAP AG of Walldorf, Ger-
many, is a representative of this last class.

While the following description focuses upon the
HANA™ database, embodiments are not limited to this par-
ticular data management platform. Other examples of in
memory databases include the SYBASE IQ database also
available from SAP AG; the Microsoft Embedded SQL for C
(ESQL/C) database available from Microsoft Corp. of Red-
mond, Wash.; and the Exalytics In-Memory database avail-
able from Oracle Corp. of Redwood Shores, Calif.

1.1.3 Extensibility within SAP HANA™

Within the SAP HANA™ database system, the “closed
world” of a traditional relational setup is softened by an
extensible operator model. In addition to traditional operators
to implement the expressiveness of the relational data model,
the SAP HANAT™ calc engine offers the opportunity to insert
generic operators executing custom code in R or [consuming
and producing any number of tables. HANA™ calc models
can be created during development time, are stored within the
SAP HANA™ database repository during deployment time,
and can be activated and instantiated with specific parameters
during runtime. This technical capability of putting any arbi-
trary custom code into generic operators of a data-flow graph
opens up a wide arena of opportunities but at the same time
requires some guidance from a software development and
database query optimization perspective. For example, the

US 9,063,710 B2

7

calc model designer has to decide which parts of the applica-
tion problem should be expressed using the data-flow prin-
ciple of the overall calc model and which should be pushed
into control-flow centric code fragments.

1.2 Parallelism from a Programming Language Perspec-
tive

Exploiting parallelism from a programming language per-
spective has an even longer history than considering parallel-
ism within the data management domain. Especially in the
context of scientific applications, a variety of different paral-
lel programming paradigms have been developed and suc-
cessfully deployed. For example, Fortran compilers reflect an
example of how to provide parallel language constructs to the
programmer to carefully layout parallel programs. Recent
development was focusing on introducing an abstraction of
commonly used patters of parallel computation, communica-
tion, and data manipulation. Parallel algorithmic skeletons
(PAS) provide a framework to enable programmers to write
their code without considering parallelism explicitly as long
as the developer is sticking to the constraints of the specific
skeleton.

The MapReduce framework is a PAS in the data manage-
ment world that tackles the large-scale processing of “Big
Data” scenarios. However, MapReduce is only one example
of'a more generic set of skeletons which should be provided
to the application developer and understood by the HANA™
optimizer to leverage the opportunity of parallelism.

Related work comprises multiple different PAS
approaches tied to specific programming languages, based on
some form of template mechanism, and reflect different pro-
gramming paradigms (functional, object-oriented, impera-
tive). FIG. 2 provides an overview of different solutions. The
following main characteristics of the different solutions are
now highlighted.

One solution is communications patterns. Many of the
known solutions provide explicit communication patterns to
send fragments of a larger (distributed) data structure to other
instances of the same program. For example, a distributed
data structure can be permuted according to the given func-
tion, which must be bijective and return the ID of the new
process responsible for the partition.

Data structures are another solution. Due to the application
domain of scientific computing, most of the existing solutions
are based on some form of matrix as the core data structure.
For example, the Muenster Skeleton Library (which is
included in the Table of FIG. 2) is based on the two different
data structures Distributed Array and DistributedMatrix with
visible partition borders and an unique index into the ele-
ments of the data structure.

Scalar and aggregate functions are another solution. Many
parallel architectural skeletons provide data-manipulation
centric operators like MAP, Z1P, SCAN, and FOLD. Since the
semantics of these skeletons can be easily mapped to classical
relational operators, we do not have to consider them specifi-
cally. A more detailed discussion of such a mapping is given
in below in section 3.1.

2. Algorithmic Skeletons for Data Flow Graphs

As outlined, existing parallel algorithmic skeletons are
mainly based on programming languages and transient data
structures, i.e. they do not follow the data-flow graph prin-
ciple but work on the assumption of variables and assign-
ments of values to variables.

Parallel algorithmic skeletons can be understood as high-
level structural templates that help the developerto parallelize
the execution of custom programs by allowing the developer

10

20

25

30

35

40

45

50

55

60

65

8

to write sequential program logic in a constrained way so that
its execution can be automatically parallelized by the under-
lying run-time system.

Skeletons may simplify programming by raising the level
of abstraction. Skeletons may enhance portability and re-use
by absolving the developer of the responsibility for detailed
and typically system-specific realization of the underlying
patterns. If available as high-level programming constructs
directly supported by the underlying system, skeletons may
improve performance by providing access to carefully opti-
mized, architecture-specific implementations of common
patterns. Skeletons may provide a scope for static (i.e. at
design or deployment time) and dynamic (i.e. at run time)
optimizations by imposing constraints and by explicitly cap-
turing information about algorithmic structure (e.g. sharing
and dependencies, or proposed degree of problem splitting)
which otherwise would be very difficult to automatically
extract from the given program logic.

In order to make parallel architectural skeletons usable for
data management tasks and for the specific scenario of the
SAP HANA™ calculation engine, a small set of skeletons
with well-defined semantics are selected. As application use
cases demand more specific patterns, the set may be extended,
i.e. minimalism, full coverage, or absence of overlaps may or
may not be present.

2.1 Principles of ORCA Algorithmic Skeletons

As mentioned above, a parallel algorithmic skeleton com-
prises a collection of attributes, which describes the behavior
of a parallel execution pattern in an application-independent
way. The use of algorithmic skeletons follows the model
shown on the left-hand side of FIG. 3, which compares the
traditional PAS approach with an intended application within
SAP HANA™,

From an abstract perspective, the PAS approach distin-
guishes four different phases. A developer extends a given
algorithmic skeleton by providing values for the various
application-specific parameters associated with the attributes
of'the skeleton and by filling in application-specific execution
logic. The developer’s extension of a skeleton results in one or
more parallel computing modules. Such a parallel computing
module represents a constrained execution environment spe-
cific for the provided execution logic. Parallel computing
modules can then be instantiated by providing application-
specific parameters that control the execution of the applica-
tion-specific execution logic. A parallel application in the
sense of this model is then a systematic collection of instan-
tiations of these modules that are interconnected and orches-
trated by surrounding application logic.

The application of this simple model to parallelization of
custom logic results in the steps shown on the right-hand side
of FIG. 3.

In a particular example, the SAP HANA™ database offers
several approaches for the execution of data-intensive calcu-
lations in the database engine. There are at least two reasons
why this achieves good performance. First, moving calcula-
tions in the form of Calculation Models to the database layer
eliminates the need to transfer large amounts of data from the
database to the application layer. Second, calculations should
be executed in the database layer to get the maximum benefit
from features offered by the HANA™ database such as fast
column operations, query optimization, and parallel execu-
tion. If applications fetch data as sets of rows for processing
on application level they cannot benefit from these features.

Calculation Models in HANA™ are data flow graphs,
comprising multiple calculation operators. They should be
understood as structural blueprints, rather than execution
plans. In other words, a Calculation model describes the

US 9,063,710 B2

9

structure of a calculation and not an actual query. For
example, at definition time, the calculation model may con-
tain an aggregation node without grouping criteria; the
attribute for grouping can then be supplied with the actual
query. Depending on the information which is queried, the
Calculation Engine tries to simplify and optimize these mod-
els and creates an instance of the model which can be
executed subsequently.

One option for the execution of custom logic directly in the
database is the use of application-specific custom operators in
the Calculation Engine. These operators are written in C++
and provide a procedural implementation of data-intensive
calculations or algorithms.

As shown in FIG. 3 on the right-hand side, the definition of
different parallel Calculation Engine operator patterns is
envisioned as general templates for the implementation of
custom Calculation operators. The operator patterns hereby
correspond to the Calc Skeletons described in the following
sections.

Depending on the nature of the operator or algorithm to be
implemented by the developer, he or she can choose the
appropriate parallelization pattern. The constraints imposed
by the selected operator pattern provide the Calculation
Engine with additional information needed for the optimiza-
tion and parallelization of the new operator.

The custom operator is then implemented by extending the
selected parallelization pattern with specific custom code.
The extended operator pattern provides a new (logical) Cal-
culation Operator that can be part of a HANA™ Calculation
Model comprised also of other, e.g. relational operators. In
FIG. 3 the extended calculation pattern corresponds to what is
called Virtual Machine completed with custom logic.

The new Calculation Engine operator can now be com-
bined with other calculation operators in a generic Calcula-
tion Model. Depending on the specific query this generic
Calculation Model and custom operator can now be param-
eterized and optimized by the Calculation Engine whereby
the additional knowledge of the internal structure of the cus-
tom operator can be leveraged. These parameters can include
for example specific values in filter conditions, or table and
column names.

The resulting concrete Calculation Model then represents a
query-specific execution plan which corresponds to what is
called a Parallel Program. The optimized model, including
the custom operator, is then executed by the execution layer in
the database engine.

Besides the use for custom operators in Calculation Mod-
els, predefined operator patterns can also be leveraged to
improve development efficiency and reuse in the develop-
ment of new intrinsic operators in the HANA™ Calculation
Engine.

As mentioned, as long as the application code is following
the constraints imposed by the individual skeletons, the sys-
tem may deploy parallelization schemes suitable for the spe-
cific application logic. The individual methods may infer
some information about their current execution environment
by calling the following methods with respect to the working
data set D:

one method returns the number of elements (rows) within
the local partition of the global data set R.

another method returns the total number of elements (rows)
in the current data set.

still another method returns the unique number of the cur-
rent thread.

In the following subsections a set of calc Skeletons are
defined which may improve the design and parallelization
opportunities of calc models having custom code embedded.

10

15

20

25

30

35

40

45

50

55

60

65

10

2.2 SEQUENTIAL Skeleton

The most basic skeleton SEQUENTIAL ensures that the
application logic specified in the skeleton’s work()-method is
executed in a strictly sequential manner, e.g. the system is not
allowed to apply any form of parallelism. As a consequence,
the skeleton comprises one single work()-method represent-
ing the specified computation logic during development time.
At runtime, the skeleton results in exactly one single generic
operator to execute the logic in a strictly sequential way. This
is similar to the execution of a L node in the HANA™ calcu-
lation engine today. FIG. 3A shows the corresponding sym-
bolic pattern.

Code running within an SEQUENTIAL skeleton will
always see the complete data set.

2.3 PIPE Skeleton

In comparison to the general parallelism concepts of data
management systems, the set of Calc Skeletons is also sub-
divided into skeletons implementing data parallelism and
pipeline parallelism. The PIPE skeleton is used to implement
pipelined execution of multiple generic code blocks being
executed in a sequence. As can be seen in FIG. 3B, different
work()-methods are passed as parameters to the skeleton and
communication is performed in a pipeline manner to have
multiple of the work()-methods running concurrently and
operating on output fragments of the preceding method. The
different work()-methods typically represent different opera-
tions on the underlying data.

By using the PIPE skeleton, the developer ensures that (a)
the individual methods are able to consume input and gener-
ate output in a step-wise manner, and (b) the processing times
of all participating operators are very similar, because the
longest running operator determines the length of the operat-
ing cycle of the pipeline.

2.4 SYSTOLIC Skeleton

FIG. 3C illustrates an extension of the PIPE skeleton. A
core idea of the SYSTOLIC skeleton is that individual data
items may enter the pipeline and—depending on the value of
the data entity or depending on the current state of the method
(see section 3.2.3)—possibly travel through the grid of meth-
ods along different paths. A special variant of the SYSTOLIC
skeleton sends every data item through all cells of the grid.

The behavior of the SYSTOLIC skeleton is determined by
the mode of the SPLIT()-operator

DOWNSTREAM: if the split()-operator has the DOWN-
STREAM property attached to it, all intermediate results are
propagated to the next work()-operator in the local pipeline.
If the DOWNSTREAM property is not given, the processing
step itself my decide at runtime whether to forward a particu-
lar data item to the following operator or send it to
work()-methods of the same level.

SINGLESIDE: the SINGLESIDE mode allows the skel-
eton to forward intermediate results between the different
processing steps with increasing position of the work()-func-
tion, i.e. the intermediate result of work, () may be forwarded
to work, ., () but not work, ; () on every level.

NEIGHBORS: with this mode, intermediate results are
distributed to the “left” and “right” neighbor of a particular
work()-method, i.e. the intermediate result of work; () will
be forwarded to work,, () and work, ;_, ().

BROADCAST: the intermediate results are sent to all
work()-methods within the same generation, including to the
emitting processing step. If no specific semantics are given,
the processing steps may decide to route every particular data
item a potentially different way within the grid. This strategy
reduces the potential of an optimizer to apply specific imple-

US 9,063,710 B2

11

mentation variants. Moreover, the higher the degree of free-
dom is, the more the provided custom logic has to take care of
deadlocks, loops etc.

2.5 WORKER FARM Skeleton

Orthogonal to the PIPE skeleton, the WORKER FARM
skeleton is a way to achieve data parallelism for given appli-
cation logic. FIG. 3D shows the WORKER FARM parallel
architecture skeleton. The WORKER FARM skeleton starts
any arbitrary number of instances running in parallel and
(usually) working on a separate chunk of the underlying data.
Accordingly, the WORKER FARM skeleton comprises three
methods as parameters. The repeated work()-method reflects
the application logic to be executed in parallel. The
split()-method is responsible for distributing the incoming
data set to the individual runtime environments of the
work()-methods. In contrast to classical FARM skeletons, a
Calc FARM skeleton deploys the following different split
semantics:

HASH(<list of cols>): using a HASH signature allows the
system to partition the data set into any arbitrary number of
partitions based on hash values computed based on the values
of given columns.

PARTITION(<list of cols>): the PARTITION mode tells
the system that the smallest unit of data to be deployed with
one instance of the work()-methods comprises all tuples of
the underlying data set with the same values in the given list
of columns. For example, in a sales monitoring scenario
PARTITION(sales region, prod group, week) defines the
smallest possible partition comprising all sales transactions
within the same region, within the same week given for a
specific product group.

CUSTOM(<any code>): the CUSTOM mode allows to
define problem-specific split-semantics.

NONE(): the data set will not be partitioned, e.g. every
instance of the work()-method will see the entire data set.

When deploying the FARM skeleton, the split()-method is
crucial for an efficient execution. If the designer is using the
HASH() or PARTITION() option, the optimizer may figure
out that this partitioning criterion is compatible with a crite-
rion used in the neighboring operators. In such a situation, the
optimizer may either perform the split earlier within the query
execution plan or may refine the partitioning scheme without
collapsing the data set into one single stream and repartitions
to feed data to the work()-methods. Using the CUSTOM()
option, the optimizer is forced to completely re-distribute the
data, because the system is not able to figure out the semantics
of'the split criterion defined in the custom code. However, this
option provides the developer the opportunity to implement
any “partitioning” scheme which might be best suited for the
following processing steps. For example, algorithms may
require some information of neighboring partitions and the
split()methods may produce “overlapping partitions”.

In analogy to the split()-method, the merge()-method may
also provide different refinement modes.

UNION(): the UNION mode concatenates the output sets
of the individual runs of the work()methods without any
further checks with respect to existing duplicates etc.

REDUCE(<list of cols>, [SUMICOUNTIMINIMAXI
<any code>]): the REDUCE-mode implements the notion of
an aggregation. Based on the given set of columns, either
predefined aggregation functions or user-defined aggregation
functions are executed and the result is attached to one single
representative instance of the columns. Although the same
effect can be achieved by adding a GROUP-BY operator after
the WORKER FARM skeleton and letting the optimizer fig-
ure out the compatibility of the parallel data streams, having

10

15

20

25

30

35

40

45

50

55

60

65

12

a more powerful REDUCE mode at the end of a WORKER
FARM skeleton is a much more natural way of expressing
these computational patterns.

CUSTOM(<any code>): analogous to a custom split()-
method, the custom merge()-method may exhibit any arbi-
trary merge logic specific to the application program. Since
the system will always reduce the parallel data streams to one
single data set, custom merge()-methods are supposed to be
used with care and only when required by the specific appli-
cation program.

In contrast to the data-parallelization patterns discussed in
the remainder of this section, the degree of parallelism with
the FARM-skeleton is defined by the system. The application
developer just allow the maximum parallelism implicitly via
the split()-method.

The application of the WORKER FARM-skeleton is mani-
fold, due to the inherent nature of data-parallelism in data-
intensive applications. For example, the classical FOR-se-
mantics of a loop can be—if there is no data-dependency
within the individual runs—mapped to a WORKER FARM-
skeleton with parallel execution of the loop body. The degree
of parallelism is then constrained by the number of steps
specified in the FOR construct.

2.6 DIVIDE and CONQUER Skeleton

The DIVIDE and CONQUER (DaC) skeleton reflects an
algorithmic pattern where the degree of parallelism is defined
by the problem itself and controlled by provided custom
logic. Within the DaC-skeleton, the solution to a problem is
generally obtained by dividing the original problem into
smaller equal subproblems and recursively solving these sub-
problems. Solutions for the subproblems must be subse-
quently combined to form the final solution of the original
problem. If the number of subproblems at each divide step is
static and pre-determined, the DaC-skeleton turns into a so-
called “fixed degree” DaC-pattern, which helps the system to
plan and schedule the necessary system resources. Examples
following the fixed degree DaC-skeleton include Discrete
Fourier transforms, approximate integration, Quicksort, and
matrix multiplication.

As illustrated in FIG. 3E, this DaC-skeleton is based on
three different methods. The work()-method constitutes the
general solve step of the problem. The divide()- and com-
bine()-methods are counterparts with respect to the FARM-
skeleton. More precisely, the divide()-methods may be
implemented either using CUSTOM()-mode to describe the
problem-specific partitioning pattern or NONE() to fully
replicate the incoming data set. The reduce()-method simi-
larly provides either a CUSTOM()-mode to combine the
partial results or UNION() if simple concatenation of the
partial results is required.

2.7 BRANCH and BOUND Skeleton

The core idea of BRANCH and BOUND (BaB) is to pro-
vide a mechanism to systematically enumerate all potential
solutions of a given problem and prune large portions of the
search space by testing upper and lower estimated bounds of
the optimized entity. Because of this characteristic, BaB-style
algorithms are often used to provide “good enough” solutions
by stopping to explore the search space if the bounds are
below a given threshold of accuracy. Examples, which can be
mapped to BaB-skeletons, are the Knapsack problem, the
Traveling Salesman problem, the maximum satisfiability
problem, and nearest neighbor search.

As outlined in the symbolic representation shown in FIG.
3F, the branch()-method implements the branching rule
defining the subproblems with usually pairwise disjoint state
spaces. For a given subproblem, a bounding rule (reflected in
the application code of the bound()-method) estimates the

US 9,063,710 B2

13

best solution by computing a lower (upper) bound for the best
solution to a given minimization (maximization) problem.
Picking the sub-problem, which should be further explored is
decided in a selection rule. The selection rule is implemented
by the betterThan()-method comparing to given problems.
The method returns true, if the lower (upper) bound for the
best solution to one problem is better than the lower (upper)
bound for the best solution to the second problem.

Finally, the elimination rule decides which subproblems
provide non-optimal or not promising solutions and should be
discarded from the set of potential subproblems. In certain
embodiments, this piece of custom logic has to be provided
by the fourth method of the BaB-skeleton is Solution(). In
comparison to other data parallel-centric skeletons, the BaB-
skeleton does not provide any explicit way to merge partial
results because the algorithm targets to be read-centric by
identifying “an index” into the overall data set pointing to the
optimal or good-enough solution.

2.8 MAP and REDUCE Skeleton

The MAP and REDUCE skeleton is intended to capture the
semantics of the well-known MapReduce programming
model. The skeleton comprises two phases with an automatic
re-partitioning of the data between the two different steps.
Although this skeleton could be represented as a sequence of
two WORKER FARM skeletons, the practical relevance jus-
tifies a dedicated skeleton. Additionally, having a special
skeleton to directly represent the MapReduce programming
paradigm eases the migration of existing Map and Reduce
applications to the SAP HANA platform implementing
embodiments as an extended set of parallel programming
skeletons. Finally, having a special skeleton for MapReduce
takes off the burden for the optimizer to automatically deduce
the semantics of the repartitioning-step (shuffle) between the
Map and the Reduce phase.

FIG. 3H illustrates the MapReduce skeleton. The merge()
step is identical to a first set of workers realizing UNION
semantics. The optimizer might take this as a hint that data is
logically put into one place but may physically stay at the
same place, i.e. FIG. 3G shows the Mapping of the Map and
Reduce to the Farm skeleton at the local node. The second set
of workers maintains PARTITION(<list of cols>) semantics
where <list of cols> represents the combined key of the inter-
mediate result produced by the first set of workers.

2.9 Summary

The set of skeletons presented in this chapter comprises a
small set of well-understood parallelization patterns. Addi-
tional skeletons can be added as the need arises.

Using these patterns in formulating data-intensive custom
operations allows the data management system to apply spe-
cific optimizations when deploying custom logic based on
skeletons. Since the patterns impose specific constraints that
are known to the data management platform, the runtime
system can optimize the degree of parallelization, e.g. based
on available system resources, when executing provided cus-
tom logic.

3.0 Enhancements

Embodiments provide a defined set of parallelization skel-
etons known by the developer and the HANA™ optimizer.
Having a small set of skeletons in a first step, may provide
advantages. On the one hand, the set of skeletons can be
increased as the users get used to it and provide application
challenges which cannot be adequately supported by any of
the current skeletons. On the other hand, the optimizer may
incrementally improve and support more and potentially
more complex skeletons. In order to show a complete picture

10

15

20

25

30

35

40

45

50

55

60

65

14

of the PAS discussion, outlined here are skeletons which
could be supported or be expressed by other relational opera-
tors. Also outlined are enhancements according to certain
embodiments.

3.1 not Included PAS Primitives

As already mentioned, the PAS idea was originally devel-
oped in the parallel programming language community with
an emphasis on high-performance number crunching envi-
ronments solving complex numerical problems. From that
perspective, some of the skeletons known in that context are
not directly applicable to data-intensive scenarios. As shown
below, the following PAS primitives are either not useful or
can be easily expressed by relational operators with well-
defined semantics and known parallelism capabilities.

The MAP primitive replaces each element of a global data
structure by the result of applying a function f{) to it. In
relational terms, this can be achieved by embedding the func-
tion f{) into a scalar expression, i.e. update foo set X=f(X).

The ZIP primitive creates a new data structure with the
same size as the original structure where each element is
initialized by the result of combining two data structures a and
b by applying a function f() to elements of both data struc-
tures. In terms of the relational model, this primitive
resembles a join between the two participating data structures
and the application of a scalar function f{() on columns of the
output of the join.

The SCAN skeleton replaces each element at the i-th posi-
tion within the data set by the result of folding EO . . . Eiusing
a given function f{). For example, the SCAN-skeleton can be
used to implement a cumulative sum along a time dimension
for different products.

The FOLD skeleton replaces a partition of a data set by one
single representative by applying the function f{). It may
therefore be understood as a SCAN-skeleton returning only
the “last” element. In terms of the relational representation,
the FOLD skeleton can be represented by the GROUP-BY
operator with its well-defined semantics if the function f()
can be restricted to the traditional aggregation functions. If
the GROUP-BY operator can be extended to general aggre-
gation functions, it can act a as a full substitute.

Tterative Combination: a problem to be solved by Iterative
Combination is described by a set of homogeneous objects
(with details of any relevant internal structure) and of any
relationship between them. Given a rule for combining two
objects, and a measure of the value of the combination, the
skeleton iterates through a loop in which each object is com-
bined (possibly in parallel) with the most suitable remaining
other object, if such exists, until either all objects have been
combined into one, or no further acceptable combinations
exist. This method is used when it is appropriate to solve
problems by progressively imposing structure onto an ini-
tially uncoordinated collection of objects. Suitable problems
include minimum spanning tree and connected components.

The Iterative Clustering pattern is designed for a possible
implementation on rectangular grids of processors. Suitable
problems have data-sets of instances which can be described
as a collection of homogeneous objects whose individual
descriptions may include information which relates them to
each other. These problems are solved by recursively cluster-
ing (possibly in parallel) the objects into independent sub-
clusters corresponding to every maximal subset of objects
which are connected directly or transitively by a specific
notion of “closeness”. This continues as often as possible (or
suitable), with members of clusters being considered together
with all other members of their parent cluster and operated
upon in some way with respect to each of these. The cluster-
ing process imposes a hierarchy of clusters onto the set of

US 9,063,710 B2

15

objects, with the original complete set at the root, and the
measure of “closeness” can be parameterized by the level in
the hierarchy. When recombining clusters, all pairs of objects
will similarly be considered and manipulated appropriately.

3.2 Further Extensions

While the current set of skeletons might be useful to
express the semantics of a large body of different analytical
applications, extensions beyond the classical set of skeletons
might be useful in a mid-term future. In particular, the fol-
lowing methods are identified going beyond the idea of
extending the data flow graph.

3.2.1 Update-in-Place Query Execution Semantics

The traditional query processing follows a data flow prin-
ciple with persistent data entities reflecting the leaf nodes,
inner nodes reflecting operators of the current query, and
edges reflecting the data flowing from the leaf nodes to the
final root node representing the final result. In particular, a
node is accepting one or potentially multiple incoming data
streams and is producing an output stream potentially being
consumed by multiple following operators. While it is advan-
tageous to only perform read accesses on the incoming data,
the system has to generate new data sets to reflect the output
data stream.

In contrast, classical programming paradigm allows (and
encourages) to reuse variables by assigning different values
of'an instance to the same variable. Inspired by this behavior,
many skeleton frameworks provide the notion of update-in-
place of global data sets as well.

Due to the nature of data-flow oriented data processing,
update-in-place semantics are not supported in traditional
query processing environments. However, within main-
memory-centric system architectures, updating/overriding
existing data structures might be an option to reduce the
overhead in allocating memory for output data and copying
from input to output data structures.

3.2.2 Specialized Data Structures

Within the classical (numerical problem solving) domain
of PAS, multidimensional arrays or very large matrices are
building the core data structures. Within the classical rela-
tional database context, sets of multi-attribute entities (tables)
represent the core data structure. One way to efficiently map
numerical problems to the database layer would be to also
introduce specific data structures to be processed within the
same data-flow and query execution framework. For
example, it would be interesting to explore the opportunity to
natively support (in addition to the iTab data structure) also
iMatrix or even iGraph structures which might be more
adequate to execute domain-specific custom code. From an
abstract software engineering perspective, all those structures
might be realized as a specialization of an iArray structure.

3.2.3 Stateful Operators and Messaging

Some of the traditional PAS rely on the notion of a “virtual
machine”. Although, as already outlined, a Calc model opera-
tor might be seen as an analog in the database domain, those
operators lack the notion of a state. As a consequence, mes-
sages as an alternative to a classical data flow might be intro-
duced to share state information between operators to orches-
trate their operation. For example, running a Support Vector
Machine would require to distribute the global support vec-
tors after every step to compare them to the locally computed
vectors. Although the exchange of such support vectors could
be modeled as a data flow, explicit message passing would be
worthwhile to represent and exchange the intermediate state
of'an algorithm. Message passing to allow synchronization of

30

35

40

45

55

16

independently running tasks would be an extremely useful
and powerful programming concept.

4.0 Examples

Two different use cases for calc skeletons are outlined. Ina
first step, it is shown how to “simulate” the well-known
MapReduce programming paradigm. By using skeletons, the
MapReduce programming world is able to be embraced and
integrated into the HANA™ in memory database platform. A
second use case illustrates the implementation of a typical
problem coming from the data mining/information retrieval
domain. In this example, skeletons are used to implement a
document classifier, i.e. given a (large) set of documents, the
algorithm assigns a document to a specific class.

4.1 Word Count

In order to show the “backward compatibility” of embodi-
ments with the Map/Reduce programming model, now out-
lined is the “implementation” of the standard “Hello world!”-
like program in Map/reduce. Given a large document,
compute the word frequency. In a first step, the document is
split into parts. Within a Map() function, the frequency of the
words within an individual partition is computed. For the
subsequent Reduce() function, the shuftle step of MapRe-
duce partitions the set of local results coming from the
Map() step with respect to the overall set of words. Within a
Reduce() function, the local word frequencies are then aggre-
gated to the overall word frequencies per document.

FIG. 4 outlines the use of the MAP and REDUCE skeleton
to express the Word Count example. After an initial split into
partitions identified by PID, the first operation computes the
local word count (LWCNT) for the individual document
parts. This is followed by a global count by summing up the
local count, again on a per word basis. The merge acts as a
union, bringing the individual count results together for each
document.

4.2 Document Classification

The problem setting of the second use case is to recognize
the language of a given set of documents based on given text
snippets. The input includes:

a (potentially large) set of documents (x, .. ., X,)

a set of different languages (c, . . . , c,) with a set of
characteristic properties (1, . . . 1)) per language. In this
example, the frequency of different letters is used as the main
differentiator of a language, i.e. the properties 1, represent the
cardinality of the k-th letter in the alphabet.

FIG. 5A shows the pseudo code to train a naive Bayes
classificator based on Gaussian distributions for different
properties and different classes. The algorithm loops over all
languages (classes). In a first step, the algorithm counts for a
set of documents of a given language the occurrence of the
individual letters. In a second phase, the algorithm deter-
mines—based on the absolute numbers—the mean and stan-
dard deviation plus the corresponding Gaussian distribution
per letter.

After learning a model based on a training set of docu-
ments, the “apply” algorithm walks through documents of
unknown language, computes the “fingerprint”, i.e. the fre-
quency of letters within a document and—in a simple case—
assigns a document to a language class based on maximum
likelihood. FIG. 5B shows the corresponding pseudo code of
the algorithm. The algorithm computes the conditional prob-
ability for all letters in every document with respect to every
language and finally picks the class with the highest probabil-
ity.

To implement this algorithm, multiple skeletons can be
combined and finally instantiated into an executable query

US 9,063,710 B2

17

plan. FIG. 6 shows the execution plan based on skeletons.
FIG. 5C shows script snippets to implement document lan-
guage classification according to an embodiment. As can be
seen, two input tables are used. Table D, holds text fragments
(PID) of documents identified with DID. On the other side,
Table C holds the trained model data, i.e. expected values and
standard deviation for every language denoted by CID and
every characteristic feature/letter denoted by FID.

The first skeleton denotes a partitioning by (DID and PID)
and performs local summation of letter frequencies in the
document fragments. This intermediate result is stored in
table D, and joined with the model data based on the indi-
vidual feature. The second skeleton takes the combined data
stream and computes the conditional probabilities for all parts
of'the document and for all language classes in parallel. The
third skeleton finally determines the highest probability per
document and assigns the corresponding language class to the
document (DID with CID).

A clear separation of programming and deployment of the
application logic is observed. During the design of the solu-
tion, the programmer is able to focus on the logic and the
finest partitioning criteria for every processing step. During
deployment, it is the optimizer’s duty to exploit the maximal
degree of parallelism and minimize inter-process communi-
cation. For example, the use case provides an excellent oppor-
tunity to conduct the join operator in a co-located fashion, by
locally combining partitions defined by (DID; PID; FID) on
the one side and (CID; FID) on the other side. Based on the
physical data representation (number of items, etc.), the opti-
mizer may deploy the finest partitioning scheme or decide to
use a more coarse-grained parallelization scheme.

4.3 Traveling Salesman Problem

As an example to exploit the Brand-and-Bound (BaB)
skeleton, we consider the well-known traveling salesman
problem and a solution based on the branch-and-bound algo-
rithmic pattern. The general approach of BaB lies in dividing
the problem space into partitions and trying to exclude certain
partitions from the optimal solution for which the optimal
solution does definitely not apply. Other partitions are recur-
sively further partitioned into small chunks, tested using the
objective function (or cost minimization function), and
excluded from the potential solution space if feasible.

Consider S a subset of solutions and L(S) a lower bound of
the costs for S. If the best solution with the lowest cost is
smaller than L(S), there is no need to further explore any
subset of S. Otherwise, S is recursively partitioned into a
more fine-grained solution space and again the lower bound
for this solution space is computed.

The traveling salesman problem (TSP) computes the tour
with minimum length to visit a given set of cities (or points in
the 2-dimensional space) exactly once. It is therefore consid-
ered an NP-hard problem. A lower bound for the TSP is given
by:

cost of any tour= 1/2><Z

veV

(sum of costs of the two least cost edges adjacent to v). FIG.
7A outlines the computation of a lower bound for a given
scenario. For example, taking node “a” as source node, nodes
“d” and “b” reflect the cheapest target nodes with a cost of 2
and 3 respectively. In total the lower bound on the cost of any
tour through the graph considering the cost of the two cheap-
est edges results in 17.5.

40

45

55

60

18

The algorithm explores the solution space by branching
and stepwise extending the set of constraints. For example, a
branch may decide to include or exclude an edge of the graph
within the currently explored solution. After computing the
cost for the solution following the scheme above, the algo-
rithm may decide to further explore or prune the solution
space (depending on the comparison of the cheapest with the
current solution) by excluding of including certain edges.

FIG. 7B shows a scenario of the example initially depicted
in FIG. 7A. In this situation, the algorithm has decided to
force an inclusion of edge “a-¢” and an exclusion of edge
“b-¢”. Computing the lower bound based on this setup leads
to cost changes in outgoing edges starting from node “a”, “e”
because of the forced inclusion of edge “a-e” and node “c”
because of the forced exclusion of edge “b-¢”. The computa-
tion of the lower bound yields 20.5, which is compared to the
already lowest bound. If the current solution is better than the
already existing solution, the algorithm branches again by
forcing an edge to be included or excluded.

With reference to the general pattern shown in FIG. 3F, the
following four (4) methods may be implemented accordingly.

The branch() method creates—based on a current solu-
tion—two new candidates by selecting an edge to be included
or excluded.

The bound() method computes the lower bound cost for
the current scenario following the principle outlined above.

The betterThan() method returns whether none, one, or
both alternatives should be further explored.

The is Solution() method returns true, if the currently
explored scenario should be discarded.

While the above description has focused upon implemen-
tation in connection with the HANA™ database offering the
imperative [. language, alternative embodiments could be
used with other database management products that offer
imperative languages. Examples can include those database
management products offering imperative languages in the
form of stored procedures in the C++ or JAVA programming
languages, to execute custom logic within the database
engine.

FIG. 8 illustrates hardware of a special purpose computing
machine configured to perform parallel execution according
to an embodiment. In particular, computer system 800 com-
prises a processor 802 that is in electronic communication
with a non-transitory computer-readable storage medium
803. This computer-readable storage medium has stored
thereon code 805 corresponding to a parallelization engine.
Code 804 corresponds to a skeleton template. Code may be
configured to reference data stored in a database of a non-
transitory computer-readable storage medium, for example as
may be present locally or in a remote database server. Soft-
ware servers together may form a cluster or logical network of
computer systems programmed with software programs that
communicate with each other and work together in order to
process requests.

An example computer system 910 is illustrated in FIG. 9.
Computer system 910 includes a bus 905 or other communi-
cation mechanism for communicating information, and a pro-
cessor 901 coupled with bus 905 for processing information.
Computer system 910 also includes a memory 902 coupled to
bus 905 for storing information and instructions to be
executed by processor 901, including information and
instructions for performing the techniques described above,
for example. This memory may also be used for storing vari-
ables or other intermediate information during execution of
instructions to be executed by processor 901. Possible imple-
mentations of this memory may be, but are not limited to,
random access memory (RAM), read only memory (ROM),
or both. A storage device 903 is also provided for storing
information and instructions. Common forms of storage
devices include, for example, ahard drive, a magnetic disk, an

US 9,063,710 B2

19
optical disk, a CD-ROM, a DVD, a flash memory, a USB
memory card, or any other medium from which a computer
canread. Storage device 903 may include source code, binary
code, or software files for performing the techniques above,
for example. Storage device and memory are both examples
of computer readable mediums.

Computer system 910 may be coupled via bus 905 to a
display 912, such as a cathode ray tube (CRT) or liquid crystal
display (LCD), for displaying information to a computer user.
An input device 611 such as a keyboard and/or mouse is
coupled to bus 905 for communicating information and com-
mand selections from the user to processor 901. The combi-
nation of these components allows the user to communicate
with the system. In some systems, bus 905 may be divided
into multiple specialized buses.

Computer system 910 also includes a network interface
904 coupled with bus 905. Network interface 904 may pro-
vide two-way data communication between computer system
910 and the local network 920. The network interface 904
may be a digital subscriber line (DSL) or a modem to provide
data communication connection over a telephone line, for
example. Another example of the network interface is a local
area network (LAN) card to provide a data communication
connection to a compatible LAN. Wireless links are another
example. In any such implementation, network interface 904
sends and receives electrical, electromagnetic, or optical sig-
nals that carry digital data streams representing various types
of information.

Computer system 910 can send and receive information,
including messages or other interface actions, through the
network interface 904 across a local network 920, an Intranet,
or the Internet 930. For a local network, computer system (10
may communicate with a plurality of other computer
machines, such as server 915. Accordingly, computer system
910 and server computer systems represented by server 915
may form a cloud computing network, which may be pro-
grammed with processes described herein. In the Internet
example, software components or services may reside on
multiple different computer systems 910 or servers 931-935
across the network. The processes described above may be
implemented on one or more servers, for example. A server
931 may transmit actions or messages from one component,
through Internet 930, local network 920, and network inter-
face 904 to a component on computer system 910. The soft-
ware components and processes described above may be
implemented on any computer system and send and/or
receive information across a network, for example.

The above description illustrates various embodiments of
the present invention along with examples of how aspects of
the present invention may be implemented. The above
examples and embodiments should not be deemed to be the
only embodiments, and are presented to illustrate the flexibil-
ity and advantages of the present invention as defined by the
following claims. Based on the above disclosure and the
following claims, other arrangements, embodiments, imple-
mentations and equivalents will be evident to those skilled in
the art and may be employed without departing from the spirit
and scope of the invention as defined by the claims.

What is claimed is:

1. A computer-implemented method comprising:

in a design time environment,

providing compute logic for data management to a par-
allelization engine as a first input, wherein the paral-
lelization engine is a calculation engine of a single
in-memory database;

providing a skeleton template to the parallelization
engine as a second input, the skeleton template

10

15

25

30

35

40

45

55

60

65

20

selected from a given set of existing skeleton tem-
plates and including a constraint matching the com-
pute logic, and

causing the parallelization engine to reference the skel-
eton template to transform the compute logic into an
instantiation of a skeleton describing the compute
logic; and

in a run time environment, causing the parallelization

engine to embed the instantiation into a parallel execu-
tion plan for execution of SQL operations in parallel on
data of the in-memory database.

2. A method as in claim 1 wherein the parallel execution
plan further comprises an additional data operation.

3. A method as in claim 2 wherein the additional data
operation comprises a relational operator.

4. A method as in claim 1 wherein the parallel execution
plan further comprises an additional skeleton instance.

5. A method as in claim 1 wherein the compute logic is
transformed into the instantiation according to a calculation
model comprising a data flow graph.

6. A non-transitory computer readable storage medium
embodying a computer program for performing a method,
said method comprising:

in a design time environment,

providing compute logic for data management to a par-
allelization engine as a first input, wherein the paral-
lelization engine is a calculation engine of a single
in-memory database,

providing a skeleton template to the parallelization
engine as a second input, the skeleton template
selected from a given set of existing skeleton tem-
plates and including a constraint matching the com-
pute logic, and

causing the parallelization engine to reference the skel-
eton template to transform the compute logic into an
instantiation of a skeleton describing the compute
logic; and

in a run time environment, causing the parallelization

engine to embed the instantiation into a parallel execu-
tion plan for execution of SQL operations in parallel on
data of the in-memory database.

7. A non-transitory computer readable storage medium as
in claim 6 wherein the parallel execution plan further com-
prises an additional data operation.

8. A non-transitory computer readable storage medium as
in claim 7 the additional data operation comprises a relational
operator.

9. A non-transitory computer readable storage medium as
in claim 6 wherein the parallel execution plan further com-
prises an additional skeleton instance.

10. A non-transitory computer readable storage medium as
in claim 6 wherein the compute logic is transformed into the
instantiation according to a calculation model comprising a
data flow graph.

11. A computer system comprising:

one or More processors;

a software program, executable on said computer system,

the software program configured to:

in a design time environment,

provide compute logic for data management to a paral-
lelization engine as a first input, wherein the parallel-
ization engine is a calculation engine of a single in-
memory database,

provide a skeleton template to the parallelization engine
as a second input, the skeleton template selected from
a given set of existing skeleton templates and includ-
ing a constraint matching the compute logic, and

US 9,063,710 B2

21

cause the parallelization engine to reference the skeleton
template to transform the compute logic into an
instantiation of a skeleton describing the compute
logic; and

in a run time environment, cause the parallelization engine

to embed the instantiation into a parallel execution plan
for execution of SQL operations in parallel on data of the
in-memory database.

12. A computer system as in claim 11 wherein the parallel
execution plan further comprises an additional data opera-
tion.

13. A computer system as in claim 12 wherein the addi-
tional data operation comprises a relational operator.

14. A computer system as in claim 11 wherein the parallel
execution plan further comprises an additional skeleton
instance.

15. A computer system as in claim 11 wherein the compute
logic is transformed into the instantiation according to a cal-
culation model comprising a data flow graph.

#* #* #* #* #*

10

15

20

22

